Skip to content

BinaryTreeDiagram

src.drawpyo.diagram_types.binary_tree.BinaryTreeDiagram

Bases: TreeDiagram

Simplifies TreeDiagram for binary-tree convenience.

Source code in src/drawpyo/diagram_types/binary_tree.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
class BinaryTreeDiagram(TreeDiagram):
    """Simplifies TreeDiagram for binary-tree convenience."""

    DEFAULT_LEVEL_SPACING = 80
    DEFAULT_ITEM_SPACING = 20
    DEFAULT_GROUP_SPACING = 30
    DEFAULT_LINK_STYLE = "straight"

    def __init__(self, **kwargs) -> None:
        kwargs.setdefault("level_spacing", self.DEFAULT_LEVEL_SPACING)
        kwargs.setdefault("item_spacing", self.DEFAULT_ITEM_SPACING)
        kwargs.setdefault("group_spacing", self.DEFAULT_GROUP_SPACING)
        kwargs.setdefault("link_style", self.DEFAULT_LINK_STYLE)
        super().__init__(**kwargs)

    def _attach(
        self, parent: BinaryNodeObject, child: BinaryNodeObject, side: str
    ) -> None:
        if not isinstance(parent, BinaryNodeObject) or not isinstance(
            child, BinaryNodeObject
        ):
            raise TypeError("parent and child must be BinaryNodeObject instances")

        if parent.tree is not self:
            parent.tree = self
        child.tree = self

        setattr(parent, side, child)

    def add_left(self, parent: BinaryNodeObject, child: BinaryNodeObject) -> None:
        self._attach(parent, child, "left")

    def add_right(self, parent: BinaryNodeObject, child: BinaryNodeObject) -> None:
        self._attach(parent, child, "right")

    @classmethod
    def from_dict(
        cls,
        data: dict,
        *,
        colors: list = None,
        coloring: str = "depth",
        **kwargs,
    ) -> "BinaryTreeDiagram":
        """
        Build a BinaryTreeDiagram from nested dict/list structures.
        data: Nested dict/list structure representing the tree.
        colors: List of ColorSchemes, StandardColors, or color hex strings to use for coloring nodes. Default: None
        coloring: str - "depth" | "hash" | "type" | "directional" - Method to match colors to nodes. Default: "depth"
            1. "depth" - Color nodes based on their depth in the tree.
            2. "hash" - Color nodes based on a hash of their value.
            3. "type" - Color nodes based on their type (category, list_item, leaf).
            4. "directional" - Color nodes based on their direction (left, right).

            Note: In colors Left Nodes are coloured by 0th index and Right Nodes are coloured by 1st index in the list of colors.
        """

        if coloring not in {"depth", "hash", "type", "directional"}:
            raise ValueError(f"Invalid coloring mode: {coloring}")

        if colors is not None and not isinstance(colors, list):
            raise TypeError("colors must be a list or None")

        colors = colors or None
        TYPE_INDEX = {"category": 0, "list_item": 1, "leaf": 2}

        # -------------------------
        # Validation
        # -------------------------

        def validate(tree_node: Dict, *, is_root=False):
            if tree_node is None or isinstance(tree_node, (str, int, float)):
                return

            if isinstance(tree_node, (list, tuple)):
                if len(tree_node) > 2:
                    raise TypeError("List node can have at most two children")
                for x in tree_node:
                    validate(x)
                return

            if isinstance(tree_node, dict):
                if is_root and len(tree_node) != 1:
                    raise TypeError("Root dict must contain exactly one key")

                if not is_root and not (1 <= len(tree_node) <= 2):
                    raise TypeError("Dict node must have 1 or 2 children")

                for node, children in tree_node.items():
                    if not isinstance(node, (str, int, float)):
                        raise TypeError(f"Invalid dict key type: {type(node)}")

                    validate(children)
                return

            raise TypeError(f"Unsupported tree tree_node type: {type(tree_node)}")

        if not isinstance(data, dict):
            raise TypeError("Top-level tree must be a dict")

        # Checks if the provided dict data is valid for a binary tree construction
        validate(data, is_root=True)

        # -------------------------
        # Helpers
        # -------------------------

        diagram = cls(**kwargs)

        def choose_color(
            value: str, node_type: str, depth: int, side: Optional[object] = None
        ):
            if not colors:
                return None

            n = len(colors)

            if coloring == "depth":
                idx = depth % n
            elif coloring == "hash":
                h = int(hashlib.md5(value.encode()).hexdigest(), 16)
                idx = h % n
            elif coloring == "directional":
                # side can be 'left'/'right' or a boolean where True==left
                if n != 2:
                    raise ValueError(
                        "colors list must be of length atleast 2 for directional coloring"
                    )

                if side is None:
                    return None

                if isinstance(side, bool):
                    is_left = side
                else:
                    is_left = str(side).lower() == "left"

                idx = (0 if is_left else 1) % n

            else:  # type
                idx = TYPE_INDEX[node_type] % n

            return colors[idx]

        def create_node(value: str, parent, color):
            if color is None:
                return BinaryNodeObject(tree=diagram, value=value, tree_parent=parent)

            if isinstance(color, drawpyo.ColorScheme):
                return BinaryNodeObject(
                    tree=diagram, value=value, tree_parent=parent, color_scheme=color
                )

            return BinaryNodeObject(
                tree=diagram, value=value, tree_parent=parent, fillColor=color
            )

        # -------------------------
        # Build
        # -------------------------

        def build(parent: BinaryNodeObject, item: Any, depth: int):
            if item is None:
                return

            # Leaf
            if isinstance(item, (str, int, float)):
                value = str(item)
                # leaf nodes in this branch are always attached as left
                node = create_node(
                    value,
                    parent,
                    choose_color(value, "leaf", depth, side="left"),
                )
                diagram.add_left(parent, node)
                return

            # Dict (named children)
            if isinstance(item, dict):
                for index, (node, children) in enumerate(item.items()):
                    name = str(node)
                    side = "left" if index == 0 else "right"
                    node = create_node(
                        name,
                        parent,
                        choose_color(name, "category", depth, side=side),
                    )

                    if index == 0:
                        diagram.add_left(parent, node)
                    else:
                        diagram.add_right(parent, node)

                    build(node, children, depth + 1)
                return

            # List / Tuple (positional children)
            for index, elem in enumerate(item):
                if elem is None:
                    continue

                if isinstance(elem, (str, int, float)):
                    name = str(elem)
                    side = "left" if index == 0 else "right"
                    node = create_node(
                        name,
                        parent,
                        choose_color(name, "leaf", depth + 1, side=side),
                    )

                elif isinstance(elem, dict) and len(elem) == 1:
                    node, children = next(iter(elem.items()))
                    name = str(node)
                    side = "left" if index == 0 else "right"
                    node = create_node(
                        name,
                        parent,
                        choose_color(name, "category", depth + 1, side=side),
                    )
                    build(node, children, depth + 1)
                else:
                    raise TypeError(
                        "List elements must be primitive or single-key dict"
                    )

                if index == 0:
                    diagram.add_left(parent, node)
                else:
                    diagram.add_right(parent, node)

        # -------------------------
        # Root
        # -------------------------

        root_key, root_value = next(iter(data.items()))
        root_name = str(root_key)

        root = create_node(
            root_name,
            None,
            choose_color(root_name, "category", 0, None),
        )

        build(root, root_value, depth=1)
        diagram.auto_layout()
        return diagram

from_dict(data, *, colors=None, coloring='depth', **kwargs) classmethod

Build a BinaryTreeDiagram from nested dict/list structures. data: Nested dict/list structure representing the tree. colors: List of ColorSchemes, StandardColors, or color hex strings to use for coloring nodes. Default: None coloring: str - "depth" | "hash" | "type" | "directional" - Method to match colors to nodes. Default: "depth" 1. "depth" - Color nodes based on their depth in the tree. 2. "hash" - Color nodes based on a hash of their value. 3. "type" - Color nodes based on their type (category, list_item, leaf). 4. "directional" - Color nodes based on their direction (left, right).

Note: In colors Left Nodes are coloured by 0th index and Right Nodes are coloured by 1st index in the list of colors.
Source code in src/drawpyo/diagram_types/binary_tree.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
@classmethod
def from_dict(
    cls,
    data: dict,
    *,
    colors: list = None,
    coloring: str = "depth",
    **kwargs,
) -> "BinaryTreeDiagram":
    """
    Build a BinaryTreeDiagram from nested dict/list structures.
    data: Nested dict/list structure representing the tree.
    colors: List of ColorSchemes, StandardColors, or color hex strings to use for coloring nodes. Default: None
    coloring: str - "depth" | "hash" | "type" | "directional" - Method to match colors to nodes. Default: "depth"
        1. "depth" - Color nodes based on their depth in the tree.
        2. "hash" - Color nodes based on a hash of their value.
        3. "type" - Color nodes based on their type (category, list_item, leaf).
        4. "directional" - Color nodes based on their direction (left, right).

        Note: In colors Left Nodes are coloured by 0th index and Right Nodes are coloured by 1st index in the list of colors.
    """

    if coloring not in {"depth", "hash", "type", "directional"}:
        raise ValueError(f"Invalid coloring mode: {coloring}")

    if colors is not None and not isinstance(colors, list):
        raise TypeError("colors must be a list or None")

    colors = colors or None
    TYPE_INDEX = {"category": 0, "list_item": 1, "leaf": 2}

    # -------------------------
    # Validation
    # -------------------------

    def validate(tree_node: Dict, *, is_root=False):
        if tree_node is None or isinstance(tree_node, (str, int, float)):
            return

        if isinstance(tree_node, (list, tuple)):
            if len(tree_node) > 2:
                raise TypeError("List node can have at most two children")
            for x in tree_node:
                validate(x)
            return

        if isinstance(tree_node, dict):
            if is_root and len(tree_node) != 1:
                raise TypeError("Root dict must contain exactly one key")

            if not is_root and not (1 <= len(tree_node) <= 2):
                raise TypeError("Dict node must have 1 or 2 children")

            for node, children in tree_node.items():
                if not isinstance(node, (str, int, float)):
                    raise TypeError(f"Invalid dict key type: {type(node)}")

                validate(children)
            return

        raise TypeError(f"Unsupported tree tree_node type: {type(tree_node)}")

    if not isinstance(data, dict):
        raise TypeError("Top-level tree must be a dict")

    # Checks if the provided dict data is valid for a binary tree construction
    validate(data, is_root=True)

    # -------------------------
    # Helpers
    # -------------------------

    diagram = cls(**kwargs)

    def choose_color(
        value: str, node_type: str, depth: int, side: Optional[object] = None
    ):
        if not colors:
            return None

        n = len(colors)

        if coloring == "depth":
            idx = depth % n
        elif coloring == "hash":
            h = int(hashlib.md5(value.encode()).hexdigest(), 16)
            idx = h % n
        elif coloring == "directional":
            # side can be 'left'/'right' or a boolean where True==left
            if n != 2:
                raise ValueError(
                    "colors list must be of length atleast 2 for directional coloring"
                )

            if side is None:
                return None

            if isinstance(side, bool):
                is_left = side
            else:
                is_left = str(side).lower() == "left"

            idx = (0 if is_left else 1) % n

        else:  # type
            idx = TYPE_INDEX[node_type] % n

        return colors[idx]

    def create_node(value: str, parent, color):
        if color is None:
            return BinaryNodeObject(tree=diagram, value=value, tree_parent=parent)

        if isinstance(color, drawpyo.ColorScheme):
            return BinaryNodeObject(
                tree=diagram, value=value, tree_parent=parent, color_scheme=color
            )

        return BinaryNodeObject(
            tree=diagram, value=value, tree_parent=parent, fillColor=color
        )

    # -------------------------
    # Build
    # -------------------------

    def build(parent: BinaryNodeObject, item: Any, depth: int):
        if item is None:
            return

        # Leaf
        if isinstance(item, (str, int, float)):
            value = str(item)
            # leaf nodes in this branch are always attached as left
            node = create_node(
                value,
                parent,
                choose_color(value, "leaf", depth, side="left"),
            )
            diagram.add_left(parent, node)
            return

        # Dict (named children)
        if isinstance(item, dict):
            for index, (node, children) in enumerate(item.items()):
                name = str(node)
                side = "left" if index == 0 else "right"
                node = create_node(
                    name,
                    parent,
                    choose_color(name, "category", depth, side=side),
                )

                if index == 0:
                    diagram.add_left(parent, node)
                else:
                    diagram.add_right(parent, node)

                build(node, children, depth + 1)
            return

        # List / Tuple (positional children)
        for index, elem in enumerate(item):
            if elem is None:
                continue

            if isinstance(elem, (str, int, float)):
                name = str(elem)
                side = "left" if index == 0 else "right"
                node = create_node(
                    name,
                    parent,
                    choose_color(name, "leaf", depth + 1, side=side),
                )

            elif isinstance(elem, dict) and len(elem) == 1:
                node, children = next(iter(elem.items()))
                name = str(node)
                side = "left" if index == 0 else "right"
                node = create_node(
                    name,
                    parent,
                    choose_color(name, "category", depth + 1, side=side),
                )
                build(node, children, depth + 1)
            else:
                raise TypeError(
                    "List elements must be primitive or single-key dict"
                )

            if index == 0:
                diagram.add_left(parent, node)
            else:
                diagram.add_right(parent, node)

    # -------------------------
    # Root
    # -------------------------

    root_key, root_value = next(iter(data.items()))
    root_name = str(root_key)

    root = create_node(
        root_name,
        None,
        choose_color(root_name, "category", 0, None),
    )

    build(root, root_value, depth=1)
    diagram.auto_layout()
    return diagram